4.5 Article

Circadian learning and memory changes in Aβ1-42 induced Alzheimer's mice

期刊

METABOLIC BRAIN DISEASE
卷 35, 期 3, 页码 463-471

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11011-019-00509-x

关键词

Alzheimer disease; Circadian rhythm; Learning and memory; Morris water maze; Locomotor activity

向作者/读者索取更多资源

Alzheimer disease (AD) is a growing health problem globally, which causes a progressive decline in learning and memory and multiple disturbances of circadian rhythms. Six Alzheimer's mice and six wild type (WT) mice were involved in this study. Morris Water Maze (MWM) tasks were conducted hourly to evaluate their circadian learning and memory performance. We used a single cosinor-based method to evaluate the circadian learning and memory of Alzheimer's mice and WT mice, respectively. An area sensor was used to record locomotor activity for 2 weeks continuously, including 7 days of 12 h light/12 h dark (LD) conditions and 7 days of 12 h dark/12 h dark (DD) conditions. All WT mice showed circadian rhythm presence in learning and memory, and the peak of escape latency appeared at circadian time (CT) 12. Only one in six Alzheimer's mice showed a circadian rhythm, but the peak of escape latency was postponed to CT20. Alzheimer's mice showed rhythm absence under LD or DD conditions. Under LD conditions, the WT mice activity was higher than that in the Alzheimer's mice during ZT0-5 (p = 0.007) and ZT18-23 (p = 0.353) but lower during ZT6-11 (p < 0.001) and ZT12-17 (p < 0.001). Learning and memory of wild type mice is proved to have a circadian variation throughout a day. In Alzheimer's mice, rhythmic locomotor activity and circadian learning and memory performance were disrupted. Understanding the role of rhythmic disturbances in the process of AD may assist to identify therapeutic targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据