4.7 Article

In-situ observations and modeling of metadynamic recrystallization in 300M steel

期刊

MATERIALS CHARACTERIZATION
卷 159, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.matchar.2019.109997

关键词

300 M steel; Metadynamic recrystallization; In-situ observation; Kinetics model; Grain size model

资金

  1. National Natural Science Foundation of China [51435007]

向作者/读者索取更多资源

The metadynamic recrystallization (MDRX) behaviors and microstructure evolution of 300 M steel are studied by hot compression experiments and high temperature laser scanning confocal microscopy (HTLSCM) experiments. The effects of insulation temperature, pre-strain rate and holding time on the MDRX behaviors are discussed in detail. Based on the statistical results of the microstructure evolution, the MDRX kinetics model and recrystallization (RX) grain size model of 300 M steel are established, respectively. It can be confirmed from the in situ observations that strain-induced boundary migration mechanism and curvature-driven grain boundary migration mechanism are the main MDRX mechanisms of 300 M steel. The MDRX develops rapidly under the high temperature or low pre-strain rate. The insulation temperature has a more important effect on the MDRX rate. The RX grain size increases with the increased insulation temperature, pre-strain rate and holding time. Compared to the pre-strain rate, the effects of insulation temperature on the maximum MDRX fraction and RX grain size are negligible. Comparisons between the experimental and predicted results verify that the proposed MDRX kinetics models and RX grain size model can quantificationally reveal the MDRX behaviors of 300 M steel well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据