4.6 Article

Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry

期刊

LITHOS
卷 352, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.lithos.2019.105289

关键词

Leinster pegmatite belt; Albite-spodumene pegmatite; Pegmatite zonation; Albitisation

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) [99999.009548/2013-00]
  2. Science Foundation Ireland (SFI) [13/RC/20921]
  3. European Regional Development Fund [GAR 19-05198S]

向作者/读者索取更多资源

Internal differentiation and consequent geochemical evolution in pegmatites are significant processes in the development of economically viable deposits of metal-bearing minerals. Albite-spodumene pegmatites, which represent important resources of Li and Ta worldwide, challenge the general rules of pegmatite petrogenesis as these are nearly homogeneous bodies with little or no intrusion-scale pegmatite zonation. Bulk intrusion concentrations of Li are in the uppermost range obtained by magmatic enrichment experiments, around 2 wt% Li2O, and extensive volumes of saccharoidal or platy albite are present. In Leinster, southeast Ireland, weakly zoned to homogeneous albitised spodumene pegmatites and their wallrocks were studied to compare mineral chemistry variations and understand the internal evolution of pegmatites, characteristics linked to the poor development of zonation, and links between internal evolution and pegmatite-wallrock interactions. Leinster pegmatites present mineralogical, textural and geochemical characteristics coherent with Li-saturation, and possibly supersaturation, prior to crystallisation. Weak border to centre zonation in the thickest bodies can be attributed to geochemically evolved initial melt, likely leading to nearly contemporaneous crystallisation throughout the intrusion and resulting in limited internal geochemical fractionation. Increased abundance of minerals bearing highly incompatible elements (e.g. columbite-group minerals and cassiterite) and network modifiers (e.g. phosphates) in albitite indicates it is a fractionation product from pegmatite crystallisation. Enrichment in incompatible elements B, Li, Rb, Cs and F in spodumene pegmatite exocontacts in different country rock types suggests unmixing of a hydrous fluid from the residual melt after the crystallisation of main pegmatitic assemblages, and that the H2O-rich component was mobilised into country rocks. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据