4.7 Article

Trichostatin A inhibits skeletal muscle atrophy induced by cigarette smoke exposure in mice

期刊

LIFE SCIENCES
卷 235, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2019.116800

关键词

Cigarette smoking; Skeletal muscle; Atrophy; TSA; Pyroptosis

资金

  1. National Natural Science Foundation of China [81971459]
  2. Liaoning Provincial Natural Science Foundation of China [2019-MS-361]

向作者/读者索取更多资源

Aims: It is well known that cigarette smoke (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD) accompanied by skeletal muscle atrophy. Histone deacetylases (HDACs) that remove acetyl groups from target proteins are necessary for the muscle atrophy associated with skeletal muscle disuse. However, the role of HDACs and trichostatin A (TSA), a HDAC inhibitor, in skeletal muscle atrophy caused by CS exposure remains poorly understood. Main methods: Female mice were exposed to CS twice daily for 40 days and TSA injected intraperitoneally into CS-exposed mice on alternate days. Skeletal muscles were weighed and gastrocnemius (Gas) muscle histomorphology examined by hematoxylin and eosin staining. Histone deacetylases 1 and 2 (HDAC1/2), and markers of ubiquitin degradation, muscle differentiation, apoptosis, pyroptosis, and the cytoskeletal proteins were assessed by western blot and immunohistochemistry in Gas. Keyfindings: CS exposure decreased body and skeletal muscle weights and triggered an increase in the percentage of fiber with centralized nuclei in Gas. HDAC1/2 proteins were upregulated in the Gas of mice exposed to CS, while TSA effectively inhibited HDAC1/2 protein levels and attenuated the loss of body weight and skeletal muscle wet weight induced by CS exposure. Markers for ubiquitin degradation, muscle differentiation, cytoskeletal proteins, apoptosis and pyroptosis were all upregulated following CS exposure and effectively restored by TSA. Significance: TSA may inhibit skeletal muscle atrophy and histomorphological alterations induced by CS exposure by downregulating markers of ubiquitin degradation, muscle fiber differentiation, cytoskeletal proteins, apoptosis and pyroptosis via HDAC1/2 inhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据