4.6 Article

A Robust and General Approach to Quantitatively Conjugate Enzymes to Plasmonic Nanoparticles

期刊

LANGMUIR
卷 35, 期 41, 页码 13356-13363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.9b01879

关键词

-

资金

  1. Netherlands Organization for Scientific Research (NVVO VIDI)
  2. Solliance
  3. Dutch province of Noord-Brabant

向作者/读者索取更多资源

Bioconjugates of plasmonic nanoparticles have received considerable attention due to their potential biomedical applications. Successful bioconjugation requires control over the number and activity of the conjugated proteins and the colloidal stability of the particles. In practice, this requires reoptimization of the conjugation protocol for each combination of protein and nanoparticle. Here, we report a robust and general protocol that allows for the conjugation of a range of proteins to different types of nanoparticles using very short polyethylene-glycol(PEG) linkers, while simultaneously preserving protein activity and colloidal stability. The use of short linkers ensures that the protein is located close to the particle surface, where the refractive index sensitivity and near-field enhancement are maximal. We demonstrate that the use of a Tween20 containing stabilizing buffer is critical in maintaining colloidal stability and protein function throughout the protocol. We obtain quantitative control over the average number of enzymes per particle by either varying the number of functional groups on the particle or the enzyme concentration during incubation. This new route of preparing quantitative protein-nanoparticle bioconjugates paves the way to develop rational and quantitative strategies to functionalize nanoparticles for applications in sensing, medical diagnostics, and drug delivery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据