4.7 Article

CFD evaluation of mean pollutant concentration variations in step-down street canyons

出版社

ELSEVIER
DOI: 10.1016/j.jweia.2019.104032

关键词

Air quality; Computational fluid dynamics; Street canyon; Aspect ratio; Building characteristics

资金

  1. ANRT (Association Nationale de la Recherche et de la Technologie)

向作者/读者索取更多资源

Atmospheric pollution became a big issue in densified urban areas where the ventilation in streets is not sufficient. It is particularly the case for street surrounded by high buildings so-called street canyons. The ventilation and, thus, the concentrations in this kind of street are highly relying on geometric properties of the street (width of the street, heights of the buildings, etc.). Reynolds-averaged Navier-Stokes equations are used to investigate the impact of two geometric street ratios on pollutant dispersion: the ratio of the leeward to the windward building height (H1/H2) and the ratio of the street width to the windward building height (W/H2). The aim is to quantitatively assess the evolution of mean pollutant concentrations in the case of step-down street canyons with H1/H2 ranging from 1.0 to 2.0 and street width ratios W/H2 ranging from 0.6 to 1.4. Three types of recirculation regimes could be established, depending on the number and the direction of the vortices occurring inside and outside the canyon. Evolution of pollutant concentrations as a function of both ratios is provided as well as the recommended regimes in the perspective of reducing pollutant concentration in step-down street canyons at pedestrian level and near building faces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据