4.6 Article

Modeling based experimental investigation on polymerization shrinkage and micro-hardness of nano alumina filled resin based dental material

出版社

ELSEVIER
DOI: 10.1016/j.jmbbm.2019.06.026

关键词

Dental composite; Optimization; Polymerization shrinkage; Micro-hardness; Full factorial design

向作者/读者索取更多资源

This paper investigates the effect of %wt composition of BisGMA/TEGDMA, stirring time, bench time, curing time and filler loading on polymerization shrinkage and micro-hardness of resin based dental composites. The investigation was carried out in two stages. In first stage, samples were prepared with different %wt composition of BisGMA/TEGDMA, stirring time, bench time, and curing time to access the effect of different input parameters for minimum polymerization shrinkage and maximum micro-hardness using Taguchi methodology. Selecting optimum values of input factors from first stage, second stage optimization was performed to investigate the effects of different filler loading on different %wt composition of BisGMA/TEGDMA using full factorial design. Prediction model was developed using Design Expert software and analysis of effect of input parameters on output responses were carried out using 3D surface plots. ANOVA were performed to check the significance of prediction model. In first stage, optimum stirring time, bench time and curing time were found to be 4 h, 50 min and 30 s, respectively. In second stage, optimum polymerization shrinkage and micro-hardness of 3.54% and 310 H-v, were predicted at 22.89% of TEGDMA content and 20% filler loading. Taguchi methodology and full factorial design were successfully implemented to access the effect of multi-input parameters on responses for resin based dental composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据