4.8 Article

Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Alkyl Thiols and Dithiols on Ag, Au, and Pt Electrodes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 141, 期 45, 页码 18182-18192

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.9b08905

关键词

-

资金

  1. U.S. National Science Foundation [CHE-1708173]
  2. NSF through the MRSEC program
  3. Deutsche Forschungsgemeinschaft [BA 1799/3-2]
  4. German Research Foundation (DFG) [INST 40/467-1 FUGG]

向作者/读者索取更多资源

We report here an extensive study of transport and electronic structure of molecular junctions based on alkyl thiols (CnT; n = 7, 8, 9, 10, 12) and dithiols (CnDT; n = 8, 9, 10) with various lengths contacted with different metal electrodes (Ag, Au, Pt). The dependence of the low-bias resistance (R) on contact work function indicates that transport is HOMO-assisted (p-type transport). Analysis of the current-voltage (I-V) characteristics for CnT and CnDT tunnel junctions with the analytical single-level model (SLM) provides both the HOMO-Fermi energy offset epsilon(trans)(h) and the average molecule-electrode coupling (Gamma) as a function of molecular length (n), electrode work function (Phi), and the number of chemical contacts (one or two). The SLM analysis reveals a strong Fermi level (E-F) pinning effect in all the junctions, i.e., epsilon(trans)(h) changes very little with n, Phi, and the number of chemical contacts, but Gamma depends strongly on these variables. Significantly, independent measurements of the HOMO-Fermi level offset (epsilon(UPS)(h)) by ultraviolet photoelectron spectroscopy (UPS) for CnT and CnDT SAMs agree remarkably well with the transport-estimated epsilon(trans)(h). This result provides strong evidence for hole transport mediated by localized HOMO states at the Au-thiol interface, and not by the delocalized a states in the C-C backbones, clarifying a long-standing issue in molecular electronics. Our results also substantiate the application of the single-level model for quantitative, unified understanding of transport in benchmark molecular junctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据