4.5 Article

Compensating for source directivity in immersive wave experimentation

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 146, 期 5, 页码 3141-3158

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.5131029

关键词

-

资金

  1. European Research Council (ERC) under the European Union [694407]
  2. European Research Council (ERC) [694407] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

A physical boundary mounted with active sources can cancel acoustic waves arriving at the boundary, and emit synthesized waves into the neighboring medium to fully control the acoustic wavefield in an experimental setup such as a water tank or air-filled cavity. Using the same principles, a physical experiment can be artificially immersed within an extended virtual (numerical) domain so that waves propagate seamlessly between the experimental setup and virtual domain. Such an immersive wave control experiment requires physical monopolar sources on the active boundary. However, real physical sources (e.g., piezoelectric transducers) project waves at middle-to-high sonic frequencies (e.g., 1-20 kHz) that do not fully conform to the theoretically required monopolar radiation pattern; if left uncorrected, this causes controlled wavefields to deviate from those desired in immersive experiments. A method is proposed to compensate for the non-monopole-like radiation patterns of the sources, and can be interpreted physically in terms of Huygens principle. The method is implemented as a pre-computation procedure that modifies the extrapolation Green's functions in the Kirchhoff-Helmholtz integral before the actual experiments take place. Two-dimensional finite-difference simulations show that the processing method can effectively suppress the undesired effect caused by non-monopolar active sources in immersive wave control experiments. (C) 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据