4.3 Article

High-efficiency and sustainable photoelectric conversion of CO2 to methanol over CuxO/TNTs catalyst by pulse potential method

期刊

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
卷 24, 期 2, 页码 447-459

出版社

SPRINGER
DOI: 10.1007/s10008-019-04439-7

关键词

CuxO catalyst; Photoelectrocatalysis; CO2 reduction; Methanolization; Pulse potential

向作者/读者索取更多资源

Herein, we report a special pulse potential method to increase methanol production and keep the CuxO/TiO2 nanotube array (TNT) catalyst active during photoelectrocatalysis reduction of CO2. The CuO/TNT catalyst was prepared via electrodeposition of copper on anodized titanium oxide followed by heat treatment. The variation of valence of copper in the photoelectrocatalytic reduction process was studied intensively by high-resolution transmission electron microscopy, XPS, and AES characterizations. Results show that the photocatalytically active CuO is apt to be reduced to elementary Cu during photoelectrocatalysis process, leading to rapid decay of photocatalytic activity. While for the case of pulse potential regime, another photocatalytically active oxide, Cu2O, will be produced on the surface during anodic pulse, which can effectively maintain the photocatalytic activity of catalyst. CV study indicates that the oxidation of Cu is prior to the oxidation of methanol, so the methanol oxidation hardly ever happens during anodic pulse stage. The catalyst applied in pulse potential regime provided a much larger photocurrent than that in constant potential regime over an extended period of time. As a result, the yield of methanol produced in optimized pulse potential condition is greatly increased, nearly twice that in constant potential regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据