4.8 Article

Energy transfer for storage or recovery in capacitive deionization using a DC-DC converter

期刊

JOURNAL OF POWER SOURCES
卷 448, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2019.227409

关键词

Capacitive deionization; Energy recovery efficiency; Buck-boost converter; Energy transfer; Supercapacitor

资金

  1. CONICYT - Becas Chile [72160536]
  2. US DOE [DE-AC52-07NA27344, 18-ERD-024]
  3. CRC [ECP16-014]

向作者/读者索取更多资源

Energy recovery from capacitive deionization (CDI) has the potential to increase overall desalination efficiency. We here define the storage (one-way) and utilization (round-trip) efficiencies between a CDI cell and an energy storage device using a generic direct current/direct current (DC/DC) converter circuit. Presented is a closed-form analytical model for the case of a supercapacitor (SC) as the energy storage device and a buck-boost converter as the DC/DC converter. The model is benchmarked with a numerical model, showing good agreement. Also presented is a comparison among energy transfer methods wherein desalination productivity is fixed. For constant current operation, this condition requires higher currents to compensate for the inactive time introduced by the converter. For fixed productivity, the mean current of the converter circuit approaches the constant current value for higher initial voltages and lower capacitances in the supercapacitor. Finally, we show the effect of relevant parameters of the SC in the storage and utilization efficiency. The model predicts storage and utilization efficiencies of at least 90% for an initial voltage of 1 V or higher and reasonable CDI and SC parameters. Lastly, we provide engineering operational parameters to maximize the efficiency of energy transfer and guidance in the selection of electronic components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据