4.8 Article

Hierarchical porous carbon foam supported on carbon cloth as high-performance anodes for aqueous supercapacitors

期刊

JOURNAL OF POWER SOURCES
卷 439, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2019.227066

关键词

Electro-etching; Porous carbon foam; Binder-free electrode; High-voltage supercapacitor

资金

  1. Fund of State Key Laboratory of Multiphase Complex Systems [MPCS-2019-A-03]
  2. Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences [COM2016A003]

向作者/读者索取更多资源

Carbon anodes have been widely utilized for the fabrication of high-performance asymmetric supercapacitors. However, they generally suffer from unsatisfactory energy density due to low specific capacitance arising from inferior conductivity and insufficient ionic diffusion rate. Here a surface modification method is conducted after the annealing of ZIF-67 precursor to produce hydrophilic, porous and heteroatom-doped carbon foam. On top of enhanced area capacitance, widened voltage window of -1.3-0V (vs saturated calomel electrode) can be achieved through electrochemical reduction to suppress the hydrogen evolution reaction. The optimized reduced porous carbon foam on carbon cloth exhibits a maximum area capacitance of 1049 mF/cm(2) at an applied current density of 12 mA/cm(2) with excellent capacitance retention of 98.4% after 6000 charge-discharge cycles at 15 mA/cm(2). By well pairing with hierarchical MnO2/CC cathode, a 2.3 V asymmetric supercapacitor in neutral aqueous Na2SO4 electrolyte is assembled, which delivers an exceptional energy density of up to 10.07 mWh/cm(3). The procedure in this paper for carbonaceous material to simultaneously achieve considerable capacitance and enlarged voltage window can open up a wider prospect toward design of anodes for high-performance aqueous supercapacitor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据