4.8 Article

Fast Li-ion conduction at grain boundaries in (La,Li)NbO3 polycrystals

期刊

JOURNAL OF POWER SOURCES
卷 441, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2019.227187

关键词

All solid-state battery; Solid-state electrolyte; Lithium lanthanum niobate; Electrochemical impedance spectroscopy

资金

  1. Research and Development Initiative for Scientific Innovation of New Generation Batteries (RIS-ING2) project of the New Energy and Industrial Technology Development Organization (NEDO), Japan

向作者/读者索取更多资源

We have investigated optimum synthesis condition and the lithium-ion conductivity of lithium lanthanum niobate (LLNbO) polycrystals which is a candidate for solid-state electrolyte in all solid-state Li-ion secondary batteries. The LLNbO polycrystals sintered at 1470 K for 12 h show the highest sintered density, the largest average grain size and the largest ionic conductivity in both the bulk and at the grain boundary. Unlike the other oxide electrolytes, the Li-ion conductivity at the grain boundary is three-times larger than that in the bulk, which is statistically confirmed by using random walk Metropolis Hastings algorithm. We also evaluated the activation energies for Li-ion conduction in LLNbO polycrystals and we found the activation energy at the grain boundary is also 1.5 times lower than that in the bulk. Atomic resolution electron microscopy elucidates that the conventional (La,Li)TiO3 has a strong La-enrichment at the grain boundary, while in LLNbO no significant Laenrichment was observed at the grain boundaries. The present results suggest that the local atomic configurations at the grain boundary strongly affects the Li-ion conductivity and it is therefore important to control the local atomic structures in polycrystalline electrolytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据