4.5 Article

Aerenchyma and barrier to radial oxygen loss are formed in roots of Taro (Colocasia esculenta) propagules under flooded conditions

期刊

JOURNAL OF PLANT RESEARCH
卷 133, 期 1, 页码 49-56

出版社

SPRINGER JAPAN KK
DOI: 10.1007/s10265-019-01150-6

关键词

Taro; Wetlands; Rhizosphere; Aerenchyma; Oxidation; Roots

资金

  1. Support project for young teacher at the Graduate School of Agriculture, Kyushu University

向作者/读者索取更多资源

Taro (Colocasia esculenta (L.) Schott) is cultivated primarily for its starchy underground stem (i.e., corm). It is adapted to both upland and wetland (i.e., flooded) conditions. Although taro is exposed to hypoxia that occurs in waterlogged soil, the mechanisms of its adaptation to hypoxia were unknown. To clarify the below-ground adaptation of taro to wetland conditions, we grew five taro cultivars/landraces hydroponically for 8 days under hypoxic conditions (n = 3) and analyzed: (1) the length of the longest root that emerged from the vegetative propagule; (2) aerenchyma (i.e., tissues containing air spaces); and (3) oxidation conditions around sides of root tips. Wild taro Aweu and the Chinese cultivar Bun-long had significantly longer roots than the Hawaiian cultivars/landraces Maui Lehua, Pi'i'ali'i, and Ele'ele Naioea (P < 0.05). Formation of aerenchyma, or air spaces that allow effective transportation of oxygen under hypoxic conditions, was observed consistently in roots of Aweu and Bun-long, but only occasionally in those of Hawaiian cultivars/landraces. In all cultivars/landraces, a pattern of radial oxygen leakage was detected only near root tips. In summary, taro appears to form aerenchyma and oxidize the rhizosphere around root tips under wetland conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据