4.6 Article

Advanced Design of Microfluidic Chip Based on SPP-LSP Plasmonic Coupling for SERS Detection with High Sensitivity and Reliability

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 50, 页码 30492-30498

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b06751

关键词

-

资金

  1. GACR [18-26170S]

向作者/读者索取更多资源

In this work, we propose the preparation and investigation of advanced microfluidic surface-enhanced Raman spectroscopy (SERS) chip with a design. allowing high SERS enhancement and analysis reproducibility. The proposed chip implements the creation of periodical metal structure (grating) inside the microfluidic chip and further immobilization of gold multibranched nanoparticles (AuMs) with shaped edges on the grating surface. Such an approach allows achieving plasmonic coupling between the surface plasmon polariton wave, excited on the Au grating, and localized surface plasmon, excited on sharped edges of AuMs. As a result, a high enhancement of electric field in the space between AuMs was achieved, which results in the high SERS enhancement factor, confirmed by both, theoretical calculation and experimental measurements with a typical SERS analyte-R6G. In particular, it is possible to detect a vanishingly small concentration of R6G using the proposed plasmonic coupling, which sensitivity significantly exceeds previously reported limits in the case of microfluidic SERS measurements. We also observed the dependency of SERS intensity on the microfluidic flow rate and demonstrated the perfect reliability of the SERS signal, measured in the microfluidic regimes under constant flow rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据