4.6 Article

Single Nanoparticle Activities in Ensemble: A Study on Pd Cluster Nanoportals for Electrochemical Oxygen Evolution Reaction

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 123, 期 43, 页码 26124-26135

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.9b07824

关键词

-

资金

  1. Okinawa Institute of Science and Technology Graduate University (GIST)
  2. Greek Research & Technology Network (GRNET) in the National HPC facility, ARTS, under the project NANO2D [pr006039]

向作者/读者索取更多资源

Comprehensive understanding of the electrochemical activity of single nanoparticles (NPs) is in critical need for opening new avenues in the broad field of electrochemistry. Published reports on single-NP electrocatalysts typically include complicated and difficult methods of synthesis and characterization; moreover, these methods usually fail to provide a reliable way to measure the activities of individual NPs within larger ensembles of particles, i.e., in real-life nanocatalyst systems. In the present work, we synthesized from the gas phase Pd NPs that act as nanoportals for electron transfer within surface-oxidized Mg thin films. The physical synthesis method provided excellent control over the deposition density and, hence, enabled the design of a system where each individual open nanoportal forms an independent active single-NP electrode (SNPE). Being uncoupled from one another, these SNPEs contribute separately toward the total electrocatalytic activity while simultaneously providing a measure of their average, individual activities. We were thus able to fabricate a stable, steady-state electrode for the electrochemical oxygen evolution reaction (OER) and to study the activity and stability of the SNPEs over a period of 20 days; the former depended on the size of the NPs, while the latter depended on the SNPEs' resistance to aerial oxidation. The remarkable stability of the ensemble catalysts under OER conditions proves that this concept can be used for further studies on the activities of different single NPs in numerous real-life systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据