4.5 Article

A novel free radical scavenger, NSP-116, ameliorated the brain injury in both ischemic and hemorrhagic stroke models

期刊

JOURNAL OF PHARMACOLOGICAL SCIENCES
卷 141, 期 3, 页码 119-126

出版社

JAPANESE PHARMACOLOGICAL SOC
DOI: 10.1016/j.jphs.2019.09.012

关键词

Brain hemorrhage; Brain ischemia; Oxidative stress; A free radical scavenger; Stroke

向作者/读者索取更多资源

Reperfusion injury is a serious problem in ischemic stroke therapy, which leads to neuronal damage and intracranial hemorrhage (ICH). A novel free radical scavenger, NSP-116, has anti-oxidative effect and may ameliorate reperfusion injury. The purpose of this study was to investigate the effects of NSP-116 on both ischemic and hemorrhagic stroke models. First, we assessed whether NSP-116 has protective effects in vitro. Pre-treatment of NSP-116 decreased neuronal cell damage induced by H2O2 or LPS. Moreover, NSP-116 also suppressed mitochondria damage and apoptosis in H2O2-induced neuronal injury model. Based on these results, we used a middle cerebral artery occlusion (MCAO)-induced ischemic stroke model or a collagenase-induced ICH model. Using the MCAO model, we evaluated the cerebral blood flow (CBF), neurological deficit, and infarct volume. Hematoma volume was assessed at 3 days after ICH. In the MCAO model, oral administration of NSP-116 at 30 mg/kg attenuated the reduction of CBF, neurological deficits, and infarct formation. Interestingly, NSP-116 also ameliorated hematoma expansion and neurological deficits in the ICH model. Additionally, pre-treatment of NSP-116 suppressed the brain microvascular endothelial cell death induced by collagenase treatment. Collectively, our findings indicated that oral administration of NSP-116 attenuates both ischemic and hemorrhagic brain injuries after stroke. (C) 2019 The Authors. Production and hosting by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据