4.5 Article

Freezing of Biologicals Revisited: Scale, Stability, Excipients, and Degradation Stresses

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 109, 期 1, 页码 44-61

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2019.10.062

关键词

biotechnology; formulation; physical stability; protein(s); protein aggregation; protein formulation(s); freeze-drying

向作者/读者索取更多资源

Although many biotech products are successfully stored in the frozen state, there are cases of degradation of biologicals during freeze storage. These examples are discussed in the Perspective to emphasize the fact that stability of frozen biologicals should not be taken for granted. Frozen-state degradation (predominantly, aggregation) has been linked to crystallization of a cryoprotector in many cases. Other factors, for example, protein unfolding (either due to cold denaturation or interaction of protein molecules with ice crystals), could also contribute to the instability. As a hypothesis, additional freezing-related destabilization pathways are introduced in the paper, that is, air bubbles formed on the ice crystallization front, and local pressure and mechanical stresses due to volume expansion during water-to-ice transformation. Furthermore, stability of frozen biologicals can depend on the sample size, via its impact on the freezing kinetics (i.e., cooling rates and freezing time) and cryoconcentration effects, as well as on the mechanical stresses associated with freezing. We conclude that, although fundamentals of freezing processes are fairly well described in the current literature, there are important gaps to be addressed in both scientific foundations of the freezing-related manufacturing processes and implementation of the available knowledge in practice. (C) 2020 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据