4.3 Article

Stratigraphic correlation and splice generation for sediments recovered from a large-lake drilling project: an example from Lake Junin, Peru

期刊

JOURNAL OF PALEOLIMNOLOGY
卷 63, 期 1, 页码 83-100

出版社

SPRINGER
DOI: 10.1007/s10933-019-00098-w

关键词

Stratigraphic correlation; Splice; ICDP; Sediment cores; Depth scale; Lake Junin

资金

  1. U.S. National Science Foundation [EAR-1400903, EAR-1404113, EAR-1402076]
  2. ICDP

向作者/读者索取更多资源

Sediment records from deep-drilling projects such as those carried out by the International Continental Scientific Drilling Program are often tens to hundreds of meters in length. To ensure the complete recovery of a stratigraphic section, a basin is usually cored multiple times in adjacent holes so that gaps between sequential cores, poorly recovered sections, or intervals affected by disturbance can be bridged or replaced with sediments from another hole. Stratigraphic correlation, the alignment of stratigraphically-equivalent horizons in cores from different holes in a common-depth scale, and splice generation, the integration of the most-representative core sections into a composite-stratigraphic section, are essential steps in this process to both evaluate and synthesize the recovered-sediment record and focus the scientific analyses. However, these undertakings can be complex and are inherently subjective, making the need for the development of a single robust stratigraphic section early in the project critical to its success. Despite this, the steps between core recovery and on-splice data generation are rarely published in sufficient detail to allow reconstruction, or refinement, of the composited record at a later date. To increase the transparency of how the composite record is created, and to provide a template for future projects, we detail the step-by-step approaches and decisions involved in generating the composite-depth scale and complete-stratigraphic splice following recovery of sediments from Lake Junin, Peru. We first explain the details and nuances of different drilling-depth scales before describing how we integrated different physical property records to generate the composite-depth scale and complete-stratigraphic splice. Here, we show that due to the complex stratigraphy in the Lake Junin sediments, high-resolution line-scan images of the cores offer millimeter-scale precision for construction of the primary-stratigraphic splice at a resolution not afforded by other physical property data. Finally, through comparison of the spliced record to physical-property records acquired in situ on the borehole, we demonstrate that the stratigraphic splice is an accurate representation of the sediment accumulated in the Lake Junin basin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据