4.4 Article

Single-cell memory trace imaging with immediate-early genes

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 326, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jneumeth.2019.108368

关键词

IEG; Memory; Catfish; Arc; FISH; Immediate-early-gene

资金

  1. [SonderForschungBereich 779]

向作者/读者索取更多资源

For the past decades, an increasing number of studies has taken advantage of molecular imaging methods involving the detection of immediate-early genes' (IEGs) expression for investigating neural substrates underlying plasticity processes and memory function. The detection of IEGs RNA by Fluorescent In-Situ Hybridization (FISH) yields single-cell as well as high temporal resolution and has recently enabled the mapping of medial temporal lobe subareas/subnetworks activity induced by single or multiple behavioural events in the same animal. After briefly reviewing the function and the ties of the typical IEGs (Fos, Zif268, Arc, Homer1a) used for mapping plasticity, we focus on discussing technical considerations vital for the successful detection of IEGs with FISH with emphasis on the design of RNA probes, the optimization of experimental conditions and the necessity for controls. Finally, we discuss recent developments in brain clearing methods that in combination with FISH detection of IEGs' expression allow for 3D imaging with single cell resolution as well as whole brain analyses. This, in parallel with the recent development of fMRI cognitive tasks in awake rats and the use of high resolution fMRI in humans, holds great promises for bridging further memory in humans and animals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据