4.7 Article

Binding behavior, water solubility and in vitro cytotoxicity of inclusion complexes between ursolic acid and amino-appended β-cyclodextrins

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 296, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2019.111993

关键词

Ursolic acid; Amino-appended beta-cyclodextrin (ACD); Inclusion complex; Binding behavior; Water solubility; In vitro cytotoxicity

资金

  1. Yunnan Applied Basic Research Projects [2018FB018, 2018FA047]
  2. National Natural Science Foundation of China (NNFSC) [21961017, 81560601]

向作者/读者索取更多资源

Ursolic acid (UA) is a pentacyclic triterpenoid of naturally abundance with a broad spectrum of important biological activities and low toxicity. However, potential applications in pharmaceutical industry are severely hampered by its poor water solubility, which leads to low bioavailability. Herein, we harness the unique and superior inclusion capability of a series of amino-appended beta-cyclodextrins (ACDs) to prepare solid inclusion complexes of UA/ACDs. These inclusion complexes were characterized in their solid state by scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG) and powder X-ray diffraction (XRD) analyses. Furthermore, their supramolecular binding behavior in aqueous solution was investigated by one-dimensional (1D)- and two-dimensional (2D)-nuclear magnetic resonance (NMR) spectroscopic experiments and NMR-based phase solubility analysis. Binding stability constants (Ks) were determined (1799, 1410, 889 and 993 L mol(-1) for UA/a0, UA/a1, UA/a2 and UA/a3, respectively), and dynamic bimodal inclusion modes with a 1:1 inclusion stoichiometry for UA/ ACDs systems were proposed. Water solubility of UA is dramatically promoted by more than 200-fold after formation of inclusion complexes. In vitro cytotoxicity of UA achieves significant elevation against human cancer cell lines HepG2, HT-29 and HCT116 by inclusion complexation from MIT assay, while these inclusion complexes show no cytotoxicity against human normal cell line LO2, which confirms their safety. These results would benefit to the further development of liquid formulation of UA for pharmaceutical uses. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据