4.3 Article

In vitro evaluation of the decontamination effect of cold atmospheric argon plasma on selected bacteria frequently encountered in small animal bite injuries

期刊

JOURNAL OF MICROBIOLOGICAL METHODS
卷 169, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.mimet.2019.105728

关键词

Cold atmospheric argon plasma; Bacterial decontamination; Time-dependent effects; Concentration-dependent effects; Bacterial growth

向作者/读者索取更多资源

Beneficial effects of cold atmospheric argon plasma (CAAP) on wound healing and its capacity for bacterial decontamination has recently been documented. First, in vivo studies in small animals did not prove any decontamination effect in canine bite wounds. The present study evaluated the overall decontamination effect of CAAP for different bacteria frequently encountered in canine bite wounds with respect to growth phase, initial bacteria concentration and treatment duration. Standard strains of Escherichia (E.) coli, Staphylococcus (S.) pseudintermedius, S. aureus, Streptococcus (S.) canis, Pseudomonos (P.) aeruginosa and Pasteurella multocida were investigated. To evaluate the influence of the bacterial growth phase, each bacterium was incubated for three and eight hours, before CAAP treatment. Three different bacterial concentrations were created per bacterium and growth phase, and were exposed to CAAP for 30 s, 1 min and 2 min. CAAP treatment resulted in acceptable decontamination rates (range 98.9-99.9%) in all bacteria species in vitro; however, differences in susceptibility were detected. Decontamination rate was mainly influenced by initial bacterial concentration and treatment time. Growth phase only influenced decontamination in S. pseudintermedius. Treatment time significantly (P < .05) correlated with the decontamination rate in E. coli, S. canis and S. aureus, with an exposure time of 2 min being most effective. Initial bacterial concentration significantly (P < .05) influenced decontamination in Pasteurella multocida and P. aeruginosa, in which treatment time was not as important. CAAP exerts effective antibacterial activity against the tested bacteria strains in vitro, with species specific effects of treatment time, growth phase and concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据