4.7 Article

Removal of divalent ions from viscous polymer-flooding produced water and seawater via electrodialysis

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 589, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2019.117251

关键词

Desalination; Divalent ions; Temperature; Viscosity; Partially hydrolyzed polyacrylamide

资金

  1. Dutch Ministry of Economic Affairs
  2. Dutch Ministry of Infrastructure and Environment
  3. European Union Regional Development Fund
  4. Province of Fryslan
  5. Northern Netherlands Provinces
  6. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant [665874]

向作者/读者索取更多资源

The presence of multivalent ions in polymer-flooding produced water (PFPW) hampers its recycling mainly because i) they increase the risk of scaling and reservoir souring (sulfate), ii) they interfere with the viscosifying effect of the fresh polyelectrolyte. It is desirable to achieve the removal of most multivalent ions without completely desalting the stream. With the adequate process conditions, electrodialysis could help to achieve this goal, so this work focused on evaluating the removal of divalent ions from synthetic PFPW through varying operational conditions. The experimental work consisted on batch experiments run in an electrodialysis-stack composed of strong Neosepta ion-exchange membranes. Synthetic PFPW solutions containing a mixture of monovalent and divalent ions were desalted at four different current densities, and three different temperatures. Additionally, the effect of the dissolved polymer on the removal was assessed by performing half of the experiments on polymer-containing solutions and half of them on solutions without it. Our results demonstrate that it is possible to achieve preferential removal of divalent cations (calcium and magnesium) through electro-dialysis, especially when employing low current densities (24 A/m(2)) and high temperature (40 degrees C). The removal of sulfate, a divalent anion, is also accelerated in these conditions. The presence of polyelectrolyte did not significantly affect the removal rate of divalent ions. Thus, it is concluded that meticulous application of ED to minimize concentrations of divalent ions in PFPW is a potential effective way for water and polymer recycling in enhanced oil recovery situations, as an alternative to the use of other non-selective desalination technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据