4.7 Article

Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 589, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.memsci.2019.117257

关键词

Carbon nanotube membrane; Bioinspired adhesion; Bioinspired mineralization; Anti-oil-fouling; Oil/water separation

资金

  1. Zhejiang Provincial Natural Science Foundation of China [LQ17B060002]
  2. National Natural Science Foundation of China [21706230]
  3. China Postdoctoral Science Foundation [2019M652141]

向作者/读者索取更多资源

Oil/water separation membranes with high flux efficiency and robust anti-oil-fouling property have attracted numerous attention, and superwetting carbon nanotube (CNT) membranes are promising candidates. The key challenges focus on the versatile integration of multiple materials/structures and the facile functionalization towards superhydrophilicity/underwater superoleophobicity. In this study, a polyzwitterion/titania functionalized carbon nanotube membrane for antifouling and high-flux oil/water emulsion separation is synthesized by a novel and simple dual-bioinspired strategy. The strategy involves the co-assembly of polyzwitterion and bioinspired-adhesive polydopamine (PDA) modified CNTs and the bioinspired mineralization of titania nanoparticles (TNPs). The as-prepared CNT membrane is evenly decorated with polyzwitterion and TNPs mediated by the comprehensive adhesive capability of PDA. The integration of the hydrophilic advantages of polyzwitterion and titania and the integration of the multiscale structures of CNTs and TNPs endow membranes with superhydrophilicity, underwater superoleophobicity and anti-oil-adhesion property. The nanoscale porous structures of CNT assembled network ensure the high permeability (about 3400 L m(-2)h(-1)) and separation efficiency (over 99.5% for emulsified oils) of membranes. Furthermore, when applied to oil-in-water emulsion separation, the as-prepared CNT membrane exhibits good recycle performance throughout several filtration cycles and maintains high recovery ratio of 95% after several cycles, indicating excellent antifouling property. The dual-bioinspired strategy combining bioinspired adhesion and bioinspired mineralization provides new insights into the design and construction of nano-structured membranes for oil/water separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据