4.4 Article

Adaptive fuzzy sliding mode control design for vehicle steer-by-wire systems

期刊

JOURNAL OF INTELLIGENT & FUZZY SYSTEMS
卷 37, 期 5, 页码 6601-6612

出版社

IOS PRESS
DOI: 10.3233/JIFS-182824

关键词

Adaptive fuzzy sliding mode (AFSM); steer-by-wire (SbW); vehicle; self-aligning torque

向作者/读者索取更多资源

This paper presents a novel adaptive fuzzy sliding mode (AFSM) control scheme for a vehicle steer-by-wire (SbW) system. Initially, the dynamics of the SbW system are described by a second-order differential equation where the Coulomb friction and the self-aligning torque are treated as external disturbances. Furthermore, an AFSM controller is designed for the SbW system, which utilizes an adaptive law to estimate both the Coulomb friction and the self-aligning torque, a sliding mode control component to deal with the parametric uncertainties and unmodeled dynamics, and a fuzzy strategy to strike a good balance between the chattering-alleviation and the tracking precision. The stability of the control system is verified in the sense of Lyapunov, and the selection of control parameters is provided in detail. Lastly, experiments are carried out under various road conditions. The experimental results demonstrate that the developed AFSM controller possesses superiority in terms of higher tracking accuracy, stronger robustness and a better balance between the control precision and smoothness in comparison with a conventional sliding mode (CSM) controller and a boundary layer-based adaptive sliding mode (BLASM) controller.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据