4.7 Article

The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 379, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.120832

关键词

Cadmium; Bacterial community; Green synthesized iron oxide nanoparticle; Soil; Stabilization

资金

  1. National Natural Science Foundation of China [41501349]
  2. Natural Science Foundation of Fujian, China [2019J01287]

向作者/读者索取更多资源

Despite numerous studies having been conducted on the stabilization of heavy metal contaminated soil, our understanding of the mechanisms involved remains limited. Here green synthesized iron oxide nanoparticles (GION) were applied to stabilize cadmium (Cd) in a contaminated soil. GION not only stabilized soil Cd, but also improved soil properties within one year of incubation. After GION application both the exchangeable and carbonate bound Cd fractions decreased by 14.2-83.5% and 18.3-85.8% respectively, and most of the Cd was translocated to the residual Cd fraction. The application of GION also strongly altered soil bacterial communities. In GION treatments, the abundance of Gemmatimonadetes, Proteobacteria, and Saccharibacteria increased which led to a shift in the dominant bacterial genera from Bacillus to Candidates koribacter. The variation in bacteria confirmed the restoration of the contaminated soil. The most abundant bacterial genus and species found in GION treatments were related to (i) plant derived biomass decomposition; (ii) ammoxidation and denitrification; and (iii) Fe oxidation. GION application may enhance the formation of larger soil aggregates with anaerobic centers and coprecipitation coupled Fe (II) oxidization, ammcaidation and nitrite reduction followed by Fe mineral ripening may be involved in Cd stabilization. The predominant stabilization mechanism was thus coprecipitation-ripening-stabilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据