4.7 Article

Highly efficient and acid-resistant metal-organic frameworks of MIL-101(Cr)-NH2 for Pd(II) and Pt(IV) recovery from acidic solutions: Adsorption experiments, spectroscopic analyses, and theoretical computations

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 387, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121689

关键词

Adsorption; Platinum group metals; Metal-organic frameworks; MIL-101(Cr)-NH2

资金

  1. South Korean Government through the NRF [2017R1A2A1A05001207]

向作者/读者索取更多资源

Cr-based metal-organic frameworks (MOFs) of MIL-101(Cr)-NH2 was post-synthesized from nitro-functionalized MIL-101(Cr) (MIL-101(Cr)-NO2) through a reduction process. Adsorption behaviors and interactions of MIL-101(Cr)-NH2 and MIL-101(Cr)-NO2 with platinum group metal (PGM) anions of Pd(II) (PdCl42-) and Pt(IV) (PtCl62-), were investigated through batch adsorption experiments, spectroscopic analyses, and theoretical computations. According to adsorption kinetics and isotherms, the uptakes of Pd(II) and Pt(IV) by in MIL-101(Cr)-NH2 were found to be much higher than their uptakes by MIL-101(Cr)-NO2. The abundant protonated amine groups (BDC-NH3+) in MIL-101(Cr)-NH2 were verified to be the main adsorptive binding sites by XPS and FTIR spectroscopy, and FE-SEM imageries. Additionally, BDC-NH3+ shows extremely high affinities (b value) and binding energies (E-bind) for PdCl42- and PtCl62- through electrostatic attraction, resulting in much higher adsorption capacities of MIL-101(Cr)-NH2 for these PGMs as compared to those of MIL-101(Cr)-NO2. Moreover, the MOFs' Cr nodes without terminal - OH indicated positive electrostatic potentials, and certain values of E-bind for PGM anions. Thus, the few-amount cationic Cr sites could also make little contributions to the adsorption of PGM anions in MIL-101(Cr)-NH2 or MIL-101(Cr)-NO2. Furthermore, the perfect regeneration and reusability of MIL-101(Cr)-NH2 over five of adsorption-desorption cycles, suggesting its potential in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据