4.7 Article

Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 387, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121709

关键词

Magnetic MIP; Erythromycin ERY; Ciprofloxacin CPX; 3-butenyltriethoxysilane; Poly(methacrylic acid) PMAA

资金

  1. Royal Society [NA140358]
  2. Heriot-Watt University (FOS scholarship)
  3. CareerConcept AG (FESTO Bildungsfond)
  4. Deutsche Bildung AG

向作者/读者索取更多资源

Adverse effects of pharmaceutical emerging contaminants (PECs), including antibiotics, in water supplies has been a global concern in recent years as they threaten fresh water security and lead to serious health problems to human, wildlife and the environment. However, detection of these contaminants in water sources, as well as food products, is difficult due to their low concentration. Here, we prepared a new family of magnetic molecular imprinted polymer (MMIP) networks for binding antibiotics via a microemulsion polymerization technique using vinyl silane modified Fe3O4 magnetic nanoparticles. The cross-linked polymer backbone successfully integrated with 20-30 nm magnetic nanoparticles and generated a novel porous polymeric network structure. These networks showed a high binding capacity for both templates, erythromycin and ciprofloxacin at 70 and 32 mg/g. Both MMIPs were also recyclable, retaining 75 % and 68 % of the binding capacity after 4 cycles. These MMIPs have showed a clear preference for binding the template molecules, with a binding capacity 4- to 7-fold higher than the other antibiotics in the same matrix. These results demonstrate our MMIP networks, which offered high binding capacity and selectivity as well as recyclability, can be used for both removal and monitoring hazardous antibiotic pollutants in different sources/samples and food products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据