4.7 Article

Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 386, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121651

关键词

Adsorption; Bromate removal; Electrocatalytic reduction; Loofah sponge; Pd/N-doped biochar electrode

资金

  1. National Natural Science Foundation of China (NSFC) [51779088, 51709104, 51908528]
  2. China Postdoctoral Science Foundation [2018M640595]
  3. Postdoctoral Innovation Talent Support Program of China [BX20180290]
  4. Fundamental Research Funds for the Central Universities [WK2060120001]

向作者/读者索取更多资源

In this work, a novel Pd/N-doped loofah sponge-derived biochar (Pd/NLSBC) material with three-dimensional (3D) network structure was prepared through the carbonization-impregnation method and applied as cathode for electrocatalytic bromate removal. The N-doped biochar not only increased the adsorption capacity of electrode, but also facilitated electron transfer, subsequently resulting in the high electrocatalytic activity for bromate removal. The results indicated higher bromate adsorption capacity of Pd/NLSBC electrode was favorable to the electrocatalytic bromate removal. The influences of significant operating factors including calcination temperature, initial solution pH, applied current intensity, and initial bromate concentration on electrocatalytic bromate removal were also optimized. Under the current intensity of 10 mA, Pd/NLSBC-800 exhibited the highest bromate removal efficiency (96.7 %) and the bromide conversion rate reached almost 100 % at the initial bromate concentration of 0.781 mu mol L-1. This process could be effectively performed over a wide range of pH (2.0-9.0) and be well fitted to the pseudo-first-order kinetic model under different conditions. The reaction mechanism study indicated that both direct electron transfer and indirect reduction by the active hydrogen atom (H*) contributed to the elctrocatalytic bromate removal. Meanwhile, Pd/NLSBC-800 electrode could maintain its high electrocatalytic activity for bromate removal after five cycles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据