4.7 Article

Study of BDE-47 induced Parkinson's disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 378, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.06.015

关键词

Mass spectrometry; Omics; Dopamine; BDE-47; Parkinson's disease

资金

  1. Hong Kong Research Grants Council [RGC-CRF C2014-14E, RGC-GRF 12300114, RGC-GRF 12101417, RGC-GRF 12100618]
  2. HKBU Interdisciplinary Research Matching Scheme [RC-IRMS/15-16/04, RC-IRCs/17-18/03]
  3. National Natural Science Foundation of China [2017YFE0191000]

向作者/读者索取更多资源

As the predominant congener of polybrominated diphenyl ethers (PBDEs) detected in human serum, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) has been reported to induce neurotoxicity. However, the possible linkage between BDE-47 and typical neurodegenerative diseases such as Parkinsons disease (PD) is still unclear. Here we carried out omics studies using liquid chromatography-orbitrap mass spectrometry (LC-orbitrap MS) to depict the BDE-47 induced metabolic changes in C57BJ/L mice to explore the possible contribution of BDE-47 exposure to PD pathology. BDE-47 dissolved in corn oil was orally administered to mice for 30 consecutive days. Results of metabolomics and lipidomics studies of PD-related brain regions revealed significant metabolite changes in pathways involved in oxidative stress and neurotransmitter production. Moreover, isobaric tags for relative and absolute quantitation (iTRAQ) proteomics study of the striatum, which is the part of brain that is most intensively studied in PD pathogenesis, revealed that BDE-47 could induce neurotransmitter system disturbance, abnormal phosphorylation, mitochondrial dysfunction and oxidative stress. Overall, this study depicts the possible contribution of BDE-47 exposure to PD pathology and highlights the powerfulness of omics platforms to deepen the mechanistic understanding of environmental pollutant-caused toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据