4.7 Article

Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 71, 期 2, 页码 470-479

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erz476

关键词

Abiotic stress; CRISPR/Cas9; climate-resilient crops; genome editing; sensitivity genes; tolerance genes; transgenic

资金

  1. Department of Biotechnology (Indo-NWO research Funds), Government of India
  2. Department of Science and Technology
  3. Worldwide University Network (WUN)
  4. International Atomic Energy Agency (Vienna)

向作者/读者索取更多资源

Abiotic stresses, including drought, salinity, temperature, and heavy metals, pose a major challenge for crop production and cause substantial yield reduction worldwide. Breeding tolerant cultivars against these abiotic stresses is the most sustainable and eco-friendly approach to cope with this challenge. Advances in genome editing technologies provide new opportunities for crop improvement by employing precision genome engineering for targeted crop traits. However, the selection of the candidate genes is critical for the success of achieving the desired traits. Broadly speaking, these genes could fall into two major categories, structural and regulatory genes. Structural genes encode proteins that provide stress tolerance directly, whereas regulatory genes act indirectly by controlling the expression of other genes involved in different cellular processes. Additionally, cis-regulatory sequences are also vital for achieving stress tolerance. We propose targeting of these regulatory and/or structural genes along with the cis-regulatory sequences via the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system as a robust, efficient, and practical approach for developing crop varieties resilient to climate change. We also discuss the possibility of creating novel quantitative trait loci for abiotic stress tolerance via the CRISPR/ Cas-mediated targeting of promoters. It is hoped that these genome editing tools will not only make a significant contribution towards raising novel plant types having tolerance to multiple abiotic stresses but will also aid in public acceptance of these products in years to come. This article is an attempt to critically evaluate the suitability of available tools and the target genes for obtaining plants with improved tolerance to abiotic stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据