4.5 Article

Thrust generation during steady swimming and acceleration from rest in anguilliform swimmers

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 222, 期 22, 页码 -

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.212464

关键词

Petromyzon marinus; Lamprey; Undulatory; Thrust; Drag

类别

资金

  1. National Science Foundation [UNS1511996, IDBR-1455471]
  2. Marine Biological Laboratory

向作者/读者索取更多资源

Escape swimming is a crucial behavior by which undulatory swimmers evade potential threats. The hydrodynamics of escape swimming have not been well studied, particularly for anguilliform swimmers, such as the sea lamprey Petromyzon marinus. For this study, we compared the kinematics and hydrodynamics of larval sea lampreys with those of lampreys accelerating from rest during escape swimming. We used experimentally derived velocity fields to calculate pressure fields and distributions of thrust and drag along the body. Lampreys initiated acceleration from rest with the formation of a high-amplitude body bend at approximately one-quarter body length posterior to the head. This deep body bend produced two high-pressure regions from which the majority of thrust for acceleration was derived. In contrast, steady swimming was characterized by shallower body bends and negative-pressure-derived thrust, which was strongest near the tail. The distinct mechanisms used for steady swimming and acceleration from rest may reflect the differing demands of the two behaviors. High-pressure-based mechanisms, such as the one used for acceleration from rest, could also be important for low-speed maneuvering during which drag-based turning mechanisms are less effective. The design of swimming robots may benefit from the incorporation of such insights from unsteady swimming.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据