4.7 Article

Biodegradation kinetic modeling of oxo-biodegradable polypropylene/polylactide/nanoclay blends and composites under controlled composting conditions

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 249, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.06.087

关键词

Biodegradation; Blend; Kinetic modeling; Polypropylene; Polylactide; Pro-oxidant

资金

  1. Council of Scientific and Industrial Research (CSIR), Govt. of India [22(00745)/17/EMR-II]

向作者/读者索取更多资源

Polypropylene/polylactide/nanoclay blend/composite films with/without pro-oxidants/compatibilizer were prepared and aerobically degraded to measure the CO2 evolution under controlled composting conditions as per ASTM D 5338. A first-order Komilis model in series with a flat lag phase was postulated involving two stages; hydrolysis of solid carbon followed by its rapid mineralization. The first, rate-limiting stage further comprised of three possible parallel paths: the solid hydrolysis of readily, moderately, and slowly hydrolyzable carbon fractions. The model parameters were computed after correlating with the experimental data using nonlinear regression analysis. The results of the model characteristic parameters, un-degraded/hydrolyzable/mineralisableintermediate carbon kinetics, and degradation curves exhibit two distinct kinetic regimes. The first regime comprising of slowly and moderately hydrolyzable carbon is shown by the first four films without pro-oxidants. This causes low degradability and degradation rate. The second regime comprising of the readily and moderately hydrolyzable carbon is shown by another four films containing pro-oxidants. They exhibit relatively high degradability and degradation rate, which peaks at around 11-14th day in the range of 0.219-0.268% per day. The values of their moderately hydrolyzable carbon fractions and the corresponding hydrolysis rates are significantly higher than that of the first regime. For the first regime, the degradability and degradation rate decreases with increase in the slowly hydrolyzable carbon impervious to microbial attack. Their degradation rate profiles show an absence of growth phase due to the absence of readily hydrolyzable carbon. The rate decreases monotonously starting from the maximum value ranging from 0.043 to 0.180% per day. The approach presented can also be implemented to model and design equipment for other waste biodegradation systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据