4.7 Article

Understanding the mechanism of cycling degradation and novel strategy to stabilize the cycling performance of graphite/LiCoO2 battery at high voltage

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jelechem.2019.113411

关键词

Lithium cobalt oxide cathode; Graphite anode; Lithium ion battery; Cyclic stability; 1,3,2-Dioxathiolane 2,2-dioxide; Electrolyte additive

资金

  1. National Key Research and Development Program of China [2018YFA0209600]

向作者/读者索取更多资源

Interest in wide-operating-voltage lithium-ion batteries is thriving because higher energy density can be enabled by employing higher-voltage cathodes and robust, stable electrolyte system. However, the severe solubilization of cobalt occurred at high cut-off voltage leads to rapid capacity degradation and limited lifespan. Here, we show that 1,3,2-dioxathiolane-2,2-dioxide as electrolyte additive has strong complexation ability to cobalt ions, which can inhibit the direct attack on solid electrolyte interphase films. Through calculation, the additive was proven to possess more negative lowest unoccupied molecular orbital energy than well-studied ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, which facilitates the reduction to form a protective film easily. As results, the LiCoO2/graphite pouch cells with 2 wt% additive cycled at 1C between 3.0 and 4.45 V exhibit significantly enhanced performance: the capacity outputs increases from 160.5 mAh g(-1) to 172.2 mAh g(-1 )and capacity retention after 200 cycles from 58.1% to 89.4%. Further development of the 1,3,2-dioxathiolane-2,2-dioxide as an electrolyte additive is a promising step towards high voltage stable electrolyte and high energy density lithium ion battery. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据