4.4 Article

Dilated Convolution Neural Network for Remaining Useful Life Prediction

出版社

ASME
DOI: 10.1115/1.4045293

关键词

data-driven engineering; machine learning for engineering applications; fault prognostics; remaining useful life; dilated convolution neural network

资金

  1. National Key RAMP
  2. D Program of China [2018YFF0214705]

向作者/读者索取更多资源

Accurate prediction of remaining useful life (RUL) plays an important role in reducing the probability of accidents and lessening the economic loss. However, traditional model-based methods for RUL are not suitable when operating conditions and fault models are complicated. To deal with this problem, this paper proposes a novel data-driven method based on a deep dilated convolution neural networks (D-CNN). The novelties of the proposed method are triple folds. First, no feature engineering is required, and the raw sensor data are directly used as the input of the model. Second the dilated convolutional structure is used to enlarge the receptive field and further improve the accuracy of prediction. Finally, time sequences are encoded by a 2D-convolution to extract higher-level features. Extensive experiments on the C-MAPSS dataset demonstrate that the proposed D-CNN achieves high performance while requiring less training time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据