4.7 Article

Construction of core-shell structured WO3@SnS2 hetero-junction as a direct Z-scheme photo-catalyst

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 554, 期 -, 页码 229-238

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2019.06.107

关键词

Photo-catalyst; Z-scherne hetero-junction; wO(3); SnS2

资金

  1. National Natural Science Foundation of China [51672215]
  2. Youth Innovation Team of Shaanxi Universities and Research Fund for the Doctoral Program of Higher Education of China (RFDP) [20136101110017]

向作者/读者索取更多资源

An ideal photocatalyst not only offers high photo-generated electron-hole pairs separation ability, but also has suitable redox potential. Here, a direct Z-scheme core-shell structured WO3@SnS2 hetero-junction photo-catalyst was prepared via two-step hydrothermal method, in which the core-shell structure, rod morphology and micro-composition of hetero-junction were confirmed through X-ray diffraction (XRD) patterns, Fourier transform infrared (FTIR) spectra, field emission scanning electron microscope (FE-SEM), transmission electron microscope (FEI-TEM) and X-ray photoelectron spectra (XPS). Their enhanced photo-catalytic abilities were evaluated by photo-degradation of Rhodamine (RhB), photo-reduction of dichromate (Cr6+) solution and photo-catalytic H-2 production through comparing with pure WO3, SnS2 or the mixture of WO3 and SnS2 (WO3/SnS2). The absorption spectra and electrochemical properties were used to estimate the band gap of samples, the expanded spectral absorption capacity and improved electron-hole separation ability, which are important factors for enhanced photo catalytic performance. Furthermore, the direct Z-scheme charge transfer mechanism of WO3@SnS2 hetero-junction was determined through the combination of theoretical calculation and experimental characterizations, which played a decisive role for retaining excellent redox potential and increasing photo-catalytic ability of WO3 and SnS2. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据