4.7 Article

Seasonal effects on electric vehicle energy consumption and driving range: A case study on personal, taxi, and ridesharing vehicles

期刊

JOURNAL OF CLEANER PRODUCTION
卷 249, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.119403

关键词

BEV; Energy consumption; Travel patterns; Charging patterns; Seasonal variation; Vehicle applications

资金

  1. Ministry of Science and Technology of China [2016YFE0102200]
  2. Aramco Services Company
  3. U.S. Department of Energy's Vehicle Technologies Office
  4. U.S. Department of Energy [DE-AC05-00OR22725]
  5. Department of Energy

向作者/读者索取更多资源

The variation in BEV energy consumption and driving range under different weather and driving conditions can affect the usefulness and consumer acceptance of these vehicles. Thus, there is a need to better understand and quantify seasonal factors that affect consumption and range under real-world driving conditions. In this paper, a dataset representing the real-world driving activity of 197 BEVs of the same model recorded over 12 months at a polling frequency of 0.1 Hz is analyzed to estimate BEV performance across different driving applications (personal driving, taxi operation, and ridesharing) and seasons (spring/autumn, summer, and winter). The results show that the electricity consumption, travel patterns, and charging patterns of BEVs vary significantly by both vehicle application and season. For example, BEV models with a range of 160 km, recharged every 1.6 days on average, can meet most trip demands of personal vehicles. However, the same BEV model when used for ridesharing or taxi purposes, is driven much more and recharged more frequently. The results also show that actual BEV electricity consumption (EC) differs significantly from the consumption predicted by the New European Driving Cycle (NEDC) test, with real-world EC being 7%-10% higher than predicted by the NEDC test cycle. Furthermore, the real-world range of personal-use BEVs in winter is only 64% of the NEDC-estimated range. The study found that, when the ambient temperature is lower than 10 degrees C, electricity consumption increases 2.4 kWh/100 km for every 5 degrees C decrease in temperature. When it is higher than 28 degrees C, EC increases 2.3 kWh/100 km for every 5 degrees C increase in temperature. These findings imply that manufacturers should design BEVs with application-appropriate driving ranges and make R&D investments for improving battery performance in cold environments. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据