4.7 Article

Multiscale recycling rare earth elements from real waste trichromatic phosphors containing glass

期刊

JOURNAL OF CLEANER PRODUCTION
卷 238, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.117998

关键词

Recyle; Rare earth; Waste phosphors; Glass; Effctive; Economical

资金

  1. Youth Natural Science Foundation of the Jiangxi Province [20181BAB216025]
  2. Project of the Xijiang Innovation Team

向作者/读者索取更多资源

In this study, desilication, decomposition, and acidolysis were used to recycle rare earth elements (REEs) from real waste trichromatic phosphors containing glass at laboratory and pilot plant scales. The effects of pre-sintering temperature, sieving, alkaline leaching conditions and alkaline fusion temperature on removal of glass and recovery of REEs were investigated. About 88% of glass fragments in the original matrix were removed after dry sieving through a 0.05 mm mesh sieve and leaching by 5 mol/L NaOH solution at 90 degrees C for 4 hat the appropriate 5:1 liquid-solid ratio. The blue and green phosphors were decomposed by alkaline fusion at 600 degrees C for 2 h. Y, Eu, Ce and Tb-rich solutions were respectively obtained by the two-steps acidolysis. The total leaching rate of REEs reached 94%, while the rates of Y, Eu, Ce, and Tb were 96%, 99%, 81%, and 92%, respectively. Furthermore, in the ton level industrial pilot, the successful application of this approach increased the recovery of the REEs up to 90% compared with the existing technology. Except for the fixed capital investments and taxes, this approach showed positive economic feasibility, since the savings are 1115 (sic)/ton. Therefore, recycling of REEs from waste phosphors is one of the cleaner and economical ways to balance the demand and supply of REEs outside of China. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据