4.7 Article

Modeling and optimal scheduling of battery energy storage systems in electric power distribution networks

期刊

JOURNAL OF CLEANER PRODUCTION
卷 234, 期 -, 页码 810-821

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.06.195

关键词

Battery energy storage system (BESS); Capability curve; Mixed integer linear programming (MILP); Distribution network; Operation optimization

向作者/读者索取更多资源

Thanks to the unique features, deployment of battery energy storage systems in distribution systems is ever-increased. Therefore, new models are needed to capture the real-life characteristics. Beside active power, the battery energy storage system can exchange reactive power with the grid due to the inverter-based connection. Although some previous works have considered this issue, a detailed linear model suitable for the realistic large scale distribution systems is not addressed adequately. In this context, this paper proposes a mixed integer linear programming model for optimal battery energy storage system operation in distribution networks. The proposed model considers various parts of the battery energy storage system including battery pack, inverter, and transformer in addition to linear modeling of the reactive power and apparent power flow limit. Moreover, a linear power flow model is used to calculate voltage magnitudes and power losses with high accuracy. The proposed model is applied to the IEEE 33-bus test case and the results prove the accuracy and efficiency of the proposed model. The results demonstrate that considering reactive capability of the batteries offers new benefits including voltage profile improvement, decreasing reactive power flow in the network, reducing network losses, and releasing network and substation capacity. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据