4.7 Article

Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil

期刊

JOURNAL OF CLEANER PRODUCTION
卷 233, 期 -, 页码 468-481

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2019.06.099

关键词

Life cycle assessment; LCA; Enhanced weathering; Carbonation; NET; Sao paulo

资金

  1. UP-Green-LCA project of the greenhouse gas removal (GGR) programme [NE/P019668/1]
  2. SOILS-R-GGREAT project of the greenhouse gas removal (GGR) programme [NE/P019498/1]
  3. UK Natural Environment Research Council (NERC)
  4. Engineering and Physical Sciences Research Council
  5. Economic and Social Science Research Council (ESRC)
  6. UK department for Business, Energy and Industrial Strategy (BEIS)
  7. NERC [NE/P019455/1, 2047037, NE/P019498/1] Funding Source: UKRI

向作者/读者索取更多资源

Enhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Parana Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this material, the relative contribution of soil carbonation and enhanced weathering, and the potential carbon dioxide removal of Sao Paulo agricultural land through enhanced weathering of basalt rock. Our results show that enhanced weathering and carbonation respectively emit around 75 and 135 kg carbon dioxide equivalent per tonne of carbon dioxide equivalent removed (considering a quarry to field distance of 65 km). We underline transportation as the principal process negatively affecting the practice and uncover a limiting road travel distance from the quarry to the field of 540 65 km for carbonation and 990 116 km for enhanced weathering, above which the emissions offset the potential capture. Regarding Sao Paulo State, the application of crushed basalt at 1 t/ha to all of the State's 12 million hectares of agricultural land could capture around 1.3 to 2.4 Mt carbon dioxide equivalent through carbonation and enhanced weathering, respectively. This study suggests a lower sequestration estimate than previous studies and emphasizes the need to consider all process stages through a Life Cycle Assessment methodology, to provide more reliable estimates of the sequestration potential of greenhouse gas removal technologies. (C) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据