4.7 Article

Excess electron solvation in ammonia clusters

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 20, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5123790

关键词

-

资金

  1. National Research, Development and Innovation Office, Hungary (NKFIH) [K128136]

向作者/读者索取更多资源

We performed a combination of quantum chemical calculations and molecular dynamics simulations to assess the stability of various size (NH3)(-)(n) ammonia cluster anions up to n = 32 monomers. In the n = 3-8 size range, cluster anions are optimized and the vertical detachment energy of the excess electron (VDE) from increasing size clusters is computed using various level methods including density functional theory, MP2, and coupled-cluster singles doubles with perturbative triples. These clusters bind the electrons in nonbranched hydrogen bonding chains in dipole bound states. The VDE increases with size from a few millielectron volt up to similar to 200 meV. The electron binding energy is weaker than that in water clusters but comparable to small methanol cluster VDEs. We located the first branched hydrogen bonding cluster that binds the excess electron at n = 7. For larger (n = 8-32) clusters, we generated cold, neutral clusters by semiempirical and ab initio molecular dynamics simulations and added an extra electron to selected neutral configurations. VDE calculations on the adiabatic and the relaxed anionic structures suggest that the n = 12-32 neutral clusters weakly bind the excess electron. Electron binding energies for these clusters (similar to 100 meV) appear to be significantly weaker than those extrapolated from experimental data. The observed excess electron states are diffuse and localized outside the molecular frame (surface states) with minor (similar to 1%) penetration to the nitrogen frontier orbitals. Stable minima with excess electron states surrounded by solvent molecules (cavity states) were not found in this size regime. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据