4.7 Article

Temperature-driven anion migration in gradient halide perovskites

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 151, 期 13, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5120270

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FC02-04ER15533]
  2. Arthur J. Schmitt Leadership Fellowship (University of Notre Dame)
  3. CEST-Bayer fellowship (University of Notre Dame)

向作者/读者索取更多资源

Cesium lead halide perovskite films with a systematic change in the halide composition of CsPbBr3-xIx, in which iodide concentration varies from x = 0 to x = 3, provide a built-in gradient band structure. Such a gradient structure allows for the integrated capture of visible photons and directs them to the energetically low-lying iodide rich region. Annealing gradient halide perovskite films at temperatures ranging from 50 degrees C to 90 degrees C causes the films to homogenize into mixed halide perovskites. The movement of halide ions during the homogenization process was elucidated using UV-Visible absorbance and X-ray photoelectron spectroscopy. The halide ion movement in CsPbBr3-xIx gradient films was tracked via absorbance changes in the visible region of the spectrum that enabled us to measure the temperature dependent rate constant and energy of activation (74.5 kJ/mol) of halide ion homogenization. Excited state processes of both gradient and homogenized films probed through transient absorption spectroscopy showed the direct flow of charge carriers and charge recombination in both films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据