4.7 Article

Deep Transferable Compound Representation across Domains and Tasks for Low Data Drug Discovery

向作者/读者索取更多资源

The main problem of small molecule-based drug discovery is to find a candidate molecule with increased pharmacological activity, proper ADME, and low toxicity. Recently, machine learning has driven a significant contribution to drug discovery. However, many machine learning methods, such as deep learning-based approaches, require a large amount of training data to form accurate predictions for unseen data. In lead optimization step, the amount of available biological data on small molecule compounds is low, which makes it a challenging problem to apply machine learning methods. The main goal of this study is to design a new approach to handle these situations. To this end, source assay (auxiliary assay) knowledge is utilized to learn a better model to predict the property of new compounds in the target assay. Up to now, the current approaches did not consider that source and target assays are adapted to different target groups with different compounds distribution. In this paper, we propose a new architecture by utilizing graph convolutional network and adversarial domain adaptation network to tackle this issue. To evaluate the proposed approach, we applied it to Tox21, ToxCast, SIDER, HIV, and BACE collections. The results showed the effectiveness of the proposed approach in transferring the related knowledge from source to target data set.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据