4.6 Article

The ghrelin O-acyltransferase structure reveals a catalytic channel for transmembrane hormone acylation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 294, 期 39, 页码 14166-14174

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.AC119.009749

关键词

membrane enzyme; protein structure; acyltransferase; protein acylation; membrane protein; structural biology; post-translational modification (PTM); co-evolutionary constraint; computational modeling; ghrelin O-acyltransferase (GOAT); membrane-bound O-acyltransferase (MBOAT); protein structure prediction; integral membrane protein

资金

  1. National Science Foundation [NSF ACI-1053575, CHE-1659775]

向作者/读者索取更多资源

Integral membrane proteins represent a large and diverse portion of the proteome and are often recalcitrant to purification, impeding studies essential for understanding protein structure and function. By combining co-evolutionary constraints and computational modeling with biochemical validation through site-directed mutagenesis and enzyme activity assays, we demonstrate here a synergistic approach to structurally model purification-resistant topologically complex integral membrane proteins. We report the first structural model of a eukaryotic membrane-bound O-acyltransferase (MBOAT), ghrelin O-acyltransferase (GOAT), which modifies the metabolism-regulating hormone ghrelin. Our structure, generated in the absence of any experimental structural data, revealed an unanticipated strategy for transmembrane protein acylation with catalysis occurring in an internal channel connecting the endoplasmic reticulum lumen and cytoplasm. This finding validated the power of our approach to generate predictive structural models for other experimentally challenging integral membrane proteins. Our results illuminate novel aspects of membrane protein function and represent key steps for advancing structure-guided inhibitor design to target therapeutically important but experimentally intractable membrane proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据