4.6 Article

Inhibition of the ULK1 protein complex suppresses Staphylococcus-induced autophagy and cell death

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 294, 期 39, 页码 14289-14307

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.RA119.008923

关键词

autophagy; Staphylococcus aureus (S; aureus); Salmonella enterica; infection; bacterial pathogenesis; autophagy-related protein 13 (ATG13); bacterial virulence; intracellular pathogen; Unc-51-like autophagy-activating kinase 1 (ULK1); xenophagy

资金

  1. Iraq Ministry of Higher Education and Scientific Research
  2. Cancer Research UK/West of Scotland Cancer Centre/Glasgow Cancer Centre
  3. Tenovus Scotland
  4. Natural Sciences and Engineering Research Council (NSERC) Canada
  5. EPSRC [EP/I037229/1] Funding Source: UKRI

向作者/读者索取更多资源

Autophagy plays multiple roles in host cells challenged with extracellular pathogens. Here, we aimed to explore whether autophagy inhibition could prevent bacterial infections. We first confirmed widely distinct patterns of autophagy responses in host cells infected with Staphylococcus aureus, as compared with Salmonella. Only infection with Staphylococcus produced strong accumulation of lipidated autophagy-related protein LC3B (LC3B-II). Infection with virulent Staphylococcus strains induced formation of p62-positive aggregates, suggestive of accumulated ubiquitinated targets. During Salmonella infection, bacteria remain enclosed by lysosomal-associated membrane protein 2 (LAMP2)-positive lysosomes, whereas virulent Staphylococcus apparently exited from enlarged lysosomes and invaded the cytoplasm. Surprisingly, Staphylococcus appeared to escape from the lysosome without generation of membrane-damage signals as detected by galectin-3 recruitment. In contrast, Salmonella infection produced high levels of lysosomal damage, consistent with a downstream antibacterial xenophagy response. Finally, we studied the Unc-51?like autophagy-activating kinase 1 (ULK1) regulatory complex, including the essential subunit autophagy-related protein 13 (ATG13). Infection of cells with either Staphylococcus or Salmonella led to recruitment of ATG13 to sites of cytosolic bacterial cells to promote autophagosome formation. Of note, genetic targeting of ATG13 suppressed autophagy and the ability of Staphylococcus to infect and kill host cells. Two different ULK1 inhibitors also prevented Staphylococcus intracellular replication and host cell death. Interestingly, inhibition of the ULK1 pathway had the opposite effect on Salmonella, sensitizing cells to the infection. Our results suggest that ULK1 inhibitors may offer a potential strategy to impede cellular infection by S. aureus.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据