4.4 Article

RelZ-Mediated Stress Response in Mycobacterium smegmatis: pGpp Synthesis and Its Regulation

期刊

JOURNAL OF BACTERIOLOGY
卷 202, 期 2, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00444-19

关键词

stress response; Mycobacterium smegmatis; ppGpp; pGpp; second messenger; Rel; RNA; antibiotic tolerance

资金

  1. Department of Science and Technology (DST), Government of India
  2. Indian Institute of Science (IISc)
  3. DST

向作者/读者索取更多资源

Stringent response is a conserved stress response mechanism in which bacteria employ the second messengers guanosine tetraphosphate and guanosine pentaphosphate [collectively termed (p)ppGpp] to reprogram their cellular processes under stress. In mycobacteria, these alarmones govern a multitude of cellular phenotypes, such as cell division, biofilm formation, antibiotic tolerance, and long-term survival. Mycobacterium smegmatis possesses the bifunctional Rel(Msm), as a (p)ppGpp synthetase and hydrolase. In addition, it contains a short alarmone synthetase MS_RHII-RSD (renamed RelZ), which contains an RNase H domain in tandem with the (p)ppGpp synthetase domain. The physiological functions of Rel(Msm), have been well documented, but there is no clear picture about the cellular functions of RelZ in M. smegmatis. RelZ has been implicated in R-loop induced stress response due to its unique domain architecture. In this study, we elucidate the differential substrate utilization pattern of RelZ compared to that of Rel(Msm). We unveil the ability of RelZ to use GMP as a substrate to synthesize pGpp, thereby expanding the repertoire of second messengers known in mycobacteria. We have demonstrated that the pGpp synthesis activity of RelZ is negatively regulated by RNA and pppGpp. Furthermore, we investigated its role in biofilm formation and antibiotic tolerance. Our findings highlight the complex role played by the RelZ in cellular physiology of M. smegmatis and sheds light upon its functions distinct from those of Rel(Msm). IMPORTANCE Bacteria utilize nucleotide messengers to survive the hostile environmental conditions and the onslaught of attacks within the host. The second messengers guanosine tetraphosphate and pentaphosphate [(p)ppGpp] have a profound impact on the long-term survival, biofilm formation, antibiotic tolerance, virulence, and pathogenesis of bacteria. Therefore, understanding the stress response mechanism regulated by (p)ppGpp is essential for discovering inhibitors of stress response and potential drug targets. Mycobacterium smegmatis contains two (p)ppGpp synthetases: Rel(Msm), and RelZ. Our study unravels the novel regulatory mechanisms of RelZ activity and its role in mediating antibiotic tolerance. We further reveal its ability to synthesize novel second messenger pGpp, which may have regulatory roles in mycobacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据