4.6 Article

Recent developments in Earth-abundant copper-sulfide thermoelectric materials

期刊

JOURNAL OF APPLIED PHYSICS
卷 126, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5119345

关键词

-

向作者/读者索取更多资源

The ability of thermoelectric devices to convert waste heat into useful electrical power has stimulated a remarkable growth in research into thermoelectric materials. There is, however, a growing recognition that limited reserves of tellurium, together with the reduction in performance that occurs at elevated temperatures, places constraints on the widespread implementation of thermoelectric technology based on the current generation of telluride-based devices. Metal sulfides have attracted considerable attention as potential tellurium-free alternatives. This perspective provides an overview of the key characteristics of sulfide thermoelectrics and the advantages they offer in the development of devices for energy recovery in the temperature range 373 <= T/K <= 773. The structures and properties of a group of synthetic materials, related to the minerals chalcocite (Cu2S), stannite (Cu2FeSnS4)/kesterite (Cu2SnS4), chalcopyrite (CuFeS2), bornite (Cu5FeS4), colusite [Cu26V2(As,Sn,Sb)(6)S-32], and tetrahedrite [(Cu,Fe)(12)Sb4S13], are discussed. In addition to all being composed of Earth-abundant elements, these sulfides share a common tetrahedral CuS4 structural building block. The use of chemical substitution to manipulate electrical and thermal transport properties is described, and common features are identified. This includes the presence of low-energy vibrational modes, the onset of copper-ion mobility, and the emergence of a liquid-like sublattice, which serve to reduce thermal conductivity. Issues associated with materials' stability during synthesis, consolidation, and device operation due to sulfur volatilization and migration of mobile copper ions are also highlighted. Future prospects for sulfide thermoelectrics are discussed in the light of the performance of materials investigated to date.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据