4.6 Article

Thermoelectric properties of non-stoichiometric Cu2+xSn1-xS3 compounds

期刊

JOURNAL OF APPLIED PHYSICS
卷 126, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5115195

关键词

-

资金

  1. National Key Research and Development Program of China [2018YFB0703600]
  2. National Natural Science Foundation of China (NNSFC) [51625205]
  3. Key Research Program of Chinese Academy of Sciences [KFZD-SW-421]
  4. Shanghai Rising-Star Program [19QA1410200]
  5. Youth Innovation Promotion Association of CAS [2016232]

向作者/读者索取更多资源

Diamondlike compound Cu2SnS3 has attracted great attention recently due to its excellent thermoelectric performance and the features of being eco-friendly and low cost. However, the underlying mechanism for its good electrical transports under high carrier concentration range is still not clear. In this work, we synthesized a series of Cu2+xSn1-xS3 (x=0-0.08) samples. These nonstoichiometric Cu2+xSn1-xS3 samples are polymorph simultaneously crystalizing in the monoclinic, tetragonal, and cubic structures. The characterization on the electrical transports and the analysis on the band structure reveal that the large density-of-states effective mass, high Seebeck coefficient, and high mobility under a high carrier concentration in the Cu2+xSn1-xS3 system are originated from the existence of multiple bands near the edge of the valence band. Likewise, the polymorphic structure has little influence on the electrical transports. A maximum power factor of 12.6 mu Wcm(-1)K(-2) at 700K has been obtained for the nonstoichiometric Cu2.08Sn0.92S3. Combining the low lattice thermal conductivity of these samples, Cu2.08Sn0.92S3 shows a peak dimensionless figure of merit of 0.5 at 700K. This work is helpful for guiding the future optimization of thermoelectric performance on Cu2SnS3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据