4.6 Article

Structure and energetics of carbon defects in SiC (0001)/SiO2 systems at realistic temperatures: Defects in SiC, SiO2, and at their interface

期刊

JOURNAL OF APPLIED PHYSICS
卷 126, 期 14, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5100754

关键词

-

资金

  1. JSPS [18H03770, 18H03873]
  2. Grants-in-Aid for Scientific Research [18H03770, 18H03873] Funding Source: KAKEN

向作者/读者索取更多资源

We report systematic first-principles calculations that reveal the atomic configurations, stability, and energy levels of carbon defects in SiC (0001)/SiO2 systems. We clarify the stable position (i.e., in SiC, SiO2, or at SiC/SiO2 interfaces) of defects depending on the oxidation environment (an oxygen-rich or -poor condition). At finite temperatures, the chemical potential of atomic species was corrected referring to thermochemical tables in order to obtain the temperature-dependent defect formation energies. Under an oxygen-rich condition, we found that the dicarbon antisite [(C-2)(Si)] in SiC is one of the favorable defects at a typical oxidation temperature of 1600 K and it creates a localized level near the conduction band edge of SiC, being a critical defect for n-channel metal-oxide-semiconductor field-effect transistors (MOSFETs). A variety of carbon-dimer defects at a SiC/SiO2 interface, such as Si-CO-CO2, Si-CO-CO-Si, and Si-(CO)-CO2, are stable under the oxygen-rich condition at 1600 K, and they create localized levels relatively close to the valence band edge of SiC, thus being critical defects for p-channel MOSFETs. In the viewpoint of static energetics, our results suggest that the oxidation of SiC under a high-temperature oxygen-poor condition is effective in suppressing the generation of carbon defects. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据