4.5 Article

Cellular Substrate to Facilitate Global Buckling of Serpentine Structures

出版社

ASME
DOI: 10.1115/1.4045282

关键词

cellular substrate; global buckling; low-stiffness serpentine structures; stretchable electronics; mechanics-guided 3D assembly; mechanical properties of materials; structures

资金

  1. China Scholarship Council

向作者/读者索取更多资源

Three-dimensional (3D) serpentine mesostructures assembled by mechanics-guided, deterministic 3D assembly have potential applications in energy harvesting, mechanical sensing, and soft robotics. One limitation is that the serpentine structures are required to have sufficient bending stiffness such that they can overcome the adhesion with the underlying substrate to fully buckle into the 3D shape (global buckling). This note introduces the use of cellular substrate in place of conventional homogeneous substrate to reduce the adhesion energy and therefore ease the above limitation. A theoretical model based on energetic analysis suggests that cellular substrates significantly enlarge the design space of global buckling. Numerical examples show that the enlarged design space enables 3D serpentine structures with reduced maximum strains and resonant frequencies, which offers more possibilities for their potential applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据